LDOS™ & LS-DOS™

BASIC Reference Manual

Cat. No. M-40-061

Copyright © 1992 MISOSYS, Inc.,
All rights reserved

, .
/A
IMI [R T AT

_/

Copyright 1986, 1987, 1990 MISOSYS, Inc., All rights reserved

LDOS/LSDOS

BASIC Reference Manual

A reference to Interpreter BASIC

and EnhComp Compiler BASIC

MISOSYS, Inc.
P. O. Box 239
Sterling, VA 22170
703-450-4181

BASIC Reference Manual

BASIC Reference Manual: Copyright 1986-1992 MISOSYS, Inc.
Combined Manual, First Edition (1992)

All Rights Reserved. No part of this reference manual, may be
reproduced in whole or in part, either manually or automatically, by any
means, including but not limited to the use of electronic, electromagnetic,
xerographic, optical, network or BBS information and retrieval systems,
without the express written consent of MISOSYS, Inc. Unauthorized
reproduction and/or adaptation is a violation of United States Copyright
laws and may subject the violator to civil penalties or criminal
prosecution.

Program License Agreement: When accompanied by a Program disk or
disks, this package is sold for use by the original purchaser on his/her
machine only. If being purchased by a company, school, or other entity
with multiple machines, multiple users, or networked systems, single-copy
purchases for multiple-use are not allowed or supported. Please write
inquiring about our reasonable multiple-use andlor site-licenses or
purchase extra copies from your dealer. The program may be copied, but
for the purpose of archival copies only for the original purchaser’s
computer.

Determination of suitability for any particular purpose whatsoever is the
sole responsibility of the end-user. No warranties, expressed or implied,
are given with regard to the suitability of this product for a particular
purpose or application. Software is made available on an as-is basis, and
MISOSYS, Inc. shall not be liable for any actual or consequential
damages, whether real or alleged, arising from the use of this software.

EnhComp, LDOS, and LSDOS are trademarks of MISOSYS, Inc.
MICROSOFT is a trademark of the Microsoft Corp.

Table of Contents

General Information

Important note to be read first......oceeeeeivnncncirinninnrsrnsnessaeeseenens 1
Nomenclature used in this Reference Manual..........ccccvveeevvennnee 1
About this Manual...........ccieriiciininncnnninninnineesressenesesaesseens 1
About BASIC variables.........cccceveererecrunne w2
Variable names 2
Variable TYPE designations 3
Introduction to Interpreter BASIC..........oeueiveienininicneneenens 4
Invoking BASIC 5
Default Extensions 7
File Blocking 8
Program Protection 8
Single Stepping a BASIC Program 8
Tape Access 9
High speed Load and Save 9
Introduction to Compiler BASIC......c..ccoviivnvereueenne 10
Compiler BASIC Warranty 11
Compiler BASIC: General Information 11
Compiler BASIC Directives 12
High Level Statements 13
High Level Functions 13
Compiler String Functions 13
Editing Interpreter BASIC Programs........cccceceeueeueenene 15
Loading and Saving BASIC Programs 15
Abbreviated Commands 19
Initiating automatic input mode 20
Deleting program lines 21
Editing existing BASIC program lines 21
Deleting a disk file 24
Listing programs 25
Clearing the resident program 26
Renaming a file 26
Copying, Moving, and Searching 26
BASIC Program Renumbering 29
BASIC Cross Reference Utility 31
Listing program variables 33
BASIC Compiler: Editing and Compiling................... 34
CED General Information 34
Invoking the REF/CMD utility.......cccoceecervereereercenenne 46

BASIC Reference Manual

Compilation from CED Editor

Independent use of compiled programs

Runtime errors

Command-line compiling

Compiler-generated line numbers

Compiler Directives

Compilation mode versus Interactive RUN mode

BASIC Statements and Functions

ABS
ADDRA
ALLOCATE
ASC

ATN

&B

BINS$
BKOFF, BKON
CALL
CDBL
CHAIN
CHR$
CINT
CLEAR
CLOSE
CLS

CMD
COMMAND
COMMON
COMPL
CONT

COs

CSNG
CURLOC
CvVD

CVI

CVs

DATA
DATES$
DEC
DEFDBL, DEFINT, DEFSNG, DEFSTR
DEFFN

52
53
54
54
59

..................................... 59

62
63

65

67
68
69
70
71
72
74
75
76
78
79
80
84
87
89
90
91
92
93
94
95
96
97
99
100
101
102

iv

Table of Contents

DEFUSR 104
DIM 105
DOWN 107
DRAW 108
END 110
EOF 111
ERASE : 112
ERL 113
ERR 114
ERROR 115
ERRS$ 116
EXISTS 117
EXP 118
FIELD 119
FIX 122
FOR ... NEXT 123
FRE 125
FUNCTION 126
GET 129
GOSUB 130
GOTO 132
&H 133
HEX$ 134
IF THEN ELSE 135
INC 137
INKEY$ 138
INP 139
INPUT 140
INPUTH# 141
INPUT$ 143
INPUT@ 144
INSTR 145
INT 147
INVERT 148
JINAME 149
LEFT 151
LEFT$ 152
LEN 153
LET 154
LINEINPUT 155
LINEINPUT# 157

LINESPAGE 159

BASIC Reference Manual

LMARGIN
LOAD
LOC

LOF

LOG

LPOS
LPRINT
LSET
MEM
MERGE
MID$()=
MID$
MKD$
MKI$
MKS$

&0

OCT$

ON exp

ON BREAK
ON ERROR
OPEN
OPTION base
ouTt
PAGELEN
PAINT
PEEK
PLOT
POINT
POKE

pPOP

POS
POSFIL
PRINT
PRINT#
PRINT USING
PUT"
PZONE
RANDOM
RDGOTO
READ
REM
REPEAT - UNTIL

160
161
162
163
164
165
166
167
170
171
173
175
176
178
179
180
181
182
183
184
185
192
193
194
195
196
197
199
200
201
202
203
204
206
213
217
219
220
221
222
223
224

vi

Table of Contents

RESET
RESTORE
RESUME
RETURN
RIGHT
RIGHTS
RMARGIN
RND
ROT
ROW
RSET
RUN
SCALE
SET
SETEOF
SGN
SIN
SORT, SCLEAR, KEY, TAG
SPACES$
SPC
SQR
STOP
STR$
STRING$
SWAP
SYSTEM
SZONE
TAN
TIME$
TROFF, TRON
TYPE
up
USING
USR
VAL
VARPTR
WAIT
WHILE WEND
WIDTH
WINKEY$
WPEEK
WPOKE

227
229
230
231
232
233
234
235
236
237
238
239
243
244
245
248
249
250
255
256
257
258
259
260
261
262
264
265
266
267
268
269
270
271
279
280
282
283
284
285
286
287

vii

BASIC Reference Manual

WRITE 288
XFIELD 289
Technical INformation........uceeieveerseniseecseeesseensnecsaneans 291
BASIC Stalementsccceceeereeemernueccrerssnsessessnesscssecesesesesseesnes 291
String fUNCHONSccerereeeeeeerretrereerereeseneerseeesnesssenesaresaesaneens 297
NUMETIC fUNCHONS ...ccveeeveeaerrnneseeenrrenecnrasstnscssatessessesssaseeans 298
Numeric BINARY Operators........ccceoeeeceverereeneesrcreeerneneecsceens 301
SUANG OPEIALOTScoeerierrenerasresseecsessncesmssssenssssessesssssseeseesens 302
Variable storage formatcceeveeeceerrerersrenneessecseessessescseesans 302
Precision of math Ibrary........ccceeecereceeerereenenecrerscsneceeneenennnes 304
File buffer allocationccccecvereivniiiiivennenecnennncsscnecnnenens 305
Compiler BASIC Support Subroutine Descriptions................... 306
Compiler BASIC Z80 Assembler.........ccccceveevnrecrecrcreeneneneees 311
Z.80 Source Code Inclusion in Programs 311
Access of BASIC variables and line numbers 312
Assembler Expression Evaluation 312
Operand Bases 314
Non-standard Z80 Instructions 314
Assembler Pseudo-OPs 315
Compiler BASIC error codesccoiveneninnniniscecensiiacen. 316
Compile-time Errors 316
RUNTIME errors 317
Interpreter BASIC Error Codes........coveeeeieevcrnennneccierenneennenes 320
Error Definitions.........cocceeeeeeecinnneeninntineenennnestssnesnesesecenenss 320
(T4, SO 325

viii

General Information

General Information

Important note to be read first

Certain documentation pertaining to the programs referenced in this
manual may be available after the Reference Manual has gone to press. If
so, There may be a file named “README/TXT” on the DOS or program
disk. Consult this file for details on additional support material and errata
as this file will contain important information which may not appear in
this printed documentation. You should read this file by issuing the
command:

LIST README
Nomenclature used in this Reference Manual

Throughout this reference manual, illustrations of communications with
the opcrating system and/or BASIC and you arc presented in various
forms. These are:

EXAMPLE font used to depict keyboard entries typed by you
Message font used to indicate a message displayed by BASIC
screen font used in presentation of display screens
[oplional] square brackets surround optional keyboard entries

onloff a vertical bar is used to indicate either of two permissible
entries, only one of which may be entered at a time.

About this manual

This BASIC Reference Manual is set up to be easily used. It is divided into
scveral different scctions. The first section is composed of general
information about BASIC. It contains information specific to “Interpreter
BASIC”, common to both DOS version 5 and DOS version 6; it also
contains information specific to a BASIC compiler called EnhComp,
which is available from MISOSYS. Throughout this manual, “EnhComp”
will be referred to as “Compiler BASIC”. All BASIC commands which
refer to the entry and editing of BASIC programs will be covered in this

1

MISOSYS BASIC Reference Manual

section; thus, commands such as EDIT, LIST, and RENUM will be
discussed here.

The second section contains reference material on all the BASIC
statements and functions supported by the BASICs previously noted,
exclusive of any editing commands. They will be listed in alphabetical
order. Because differences in dialect occur across these implementations,
those differences will be noted as they appear in the Reference Manual.
Please remember that not every command, statement, or function is
supported by all implementations.

This manual is written as a reference guide only. All commands will be
explained in terms of the function which they serve. In no way will this
manual serve as a tutorial on implementation of these commands. There
are many such books currently on the market that deal with using a
“Microsoft compatible” disk BASIC for generalized and specific
applications. If you require tutorial aids for utilizing BASIC, contact your
computer dealer or book store for a list of such material.

About BASIC variables

Variable names

Variable names are limited to the character set <A-Z> and <0-9>;
Compiler BASIC also allows <@>. The first letter of the name must be an
alphabetic character, <A-Z>.

DOS 5 Interpreter BASIC variable names can be of any length; however,
only the first two characters are significant. The restriction on variable
names is that you cannot use the name of a BASIC Statement or Function
as the name of a variable. Also, a reserved word (the name of a statement,
operator, or function) is not permitted as a substring of a variable name.

Compiler BASIC, as well as DOS 6 Interpreter BASIC, permit long
variable names (up to 40 characters in length), unique for their entire
length, and allow reserved words (BASIC statement and function names)
to be substrings of variable names. As such, it is required that all statement
and function names, as well as variable names be delimited by either a
<SPACE>, a special character not acceptable as a name (i.e. :,;"*+-/<>=),
or an end of line. The only restrictions on variable names are that you
cannot use the name of a BASIC Statement or Function as the name of a

General Information

variable. Thus, the following are all distinct variables: ABC, ABCDEF,
AB123.

Variable TYPE designations

Without any overriding type declaration, either explicit or implicit,
variables are of type single precision. As is standard with versions of
Microsoft BASIC, the following characters can be used as a variable name

suffix to explicitly designate the variable as being of the specific type
identified.

Type Char Variable Type Identified
% Integer variable
! Single precision floating point variable
Double precision floating point variable
$ String variable

Variables may also be declared as being of a designated type by belonging
to the operand class of a DEFINT, DEFSNG, DEFDBL, or DEFSTR
statement. This is a declaration whereby the type is implicitly designated
according to the first character of the name.

Strings, as you're probably aware, are bytes which are sequentially strung
together in a “string” and which can be assigned and manipulated using
string variables, which can hold a string of variable length. Interpreter
BASIC supports string lengths from O to 255 characters. With Compiler
BASIC, this length can be from O to 32767, a significant improvement
over the 255 character limitation of interpretive BASICs.

MISOSYS BASIC Reference Manual

Introduction to Interpreter BASIC

Your computer contains two different types of memory: ROM (Read Only
Memory) and RAM (Random Access Memory). ROM contains the
routines necessary to get your computer started; ROM under DOS 5 may
also contain a portion of the BASIC interpreter. This ROM BASIC allows
you some capabilities of programming in the BASIC language. However,
ROM BASIC does not allow you to interface with your disk drives when
programming, and hence does not fully utilize your disk system.

The BASIC provided with your DOS is either an extension of ROM
BASIC and resides in RAM, or is a complete BASIC interpreter. DOS
version 5 BASIC utilizes commands found in ROM BASIC, and adds
commands to ROM BASIC which will allow you to interface your BASIC
programs with the disk operating system.

The disk-BASIC extension or complete “Interpreter” BASIC is contained
in files provided on your DOS “Master Diskette”. Included are a primary
BASIC interpreter program and support utilities, some of which are
present as overlays. They are:

BASIC/CMD Disk Basic program.

BASIC/HLP A file of HELP information for DOS version 5
BASIC
BASIC/OV1 This file contains the library command overlay

segment of the DOS version 6 BASIC
interpreter. It contains the CMD"N" renumber
feature overlay used with DOS 5 BASIC.

BASIC/OV2 This file contains the routines for the DOS
version 6 BASIC line copy, move, find, and
search functions. For DOS version 5, it contains
BASIC'’s cross reference CMD"X" feature.

BASIC/OV3 This overlay contains the BASIC handling of
error display and CMD"O" sort routines for
DOS version 5 BASIC.

Interpreter BASIC - Editing and Program Maintenance

BASIC/OV4 A DOS version 5 BASIC overlay to dump a list
of active variables

Invoking BASIC

This is the syntax to be observed when invoking BASIC.

Interpreter BASIC
BASIC [program/BAS] (F=n,M=n) 6
BASIC (B=sw,F=n,M=n,HIGH | LOW,E=0ff) command 5
BASIC * 5

program This may be the name of a BASIC program which
will be loaded and RUN; a /BAS extension is
required if the program filespec includes it.

Files= Optional parameter that specifies the maximum
number of files BASIC will be able to access
(1 to 15). If not specified, 3 is assumed.

Mem= Optional parameter to set the highest memory
address to be used by BASIC. All memory above
this address will be “protected”. If not specified, all
memory up to HIGH$ will be available.

Note: “5” refers to DOS 5 BASIC; “6” refers to DOS 6 BASIC

MISOSYS BASIC Reference Manual

Additional DOS 5 Interpreter BASIC Parameters

Used to re-enter BASIC with the program and
the variables intact.

Blk= Optional parameter that specifies Blocked file mode,
either ON or OFF. ON is the default.
Ext= Optional switch to turn off the default file extension
“/BAS” used with the BASIC commands LOAD,
RUN, MERGE and SAVE.
HIGH Model 11 parameter that sets the cassette baud rate,
or either HIGH or LOW (HIGH=1500 and LOW=500).

LOW The default is HIGH. If HIGH is used, the HITAPE
command must be issued prior to entering BASIC.

command This may be any valid BASIC command which will
execute immediately upon entering BASIC, such as
RUN"MYPROG/BAS", AUTO100, etc

The “command” specification is also optional. If not specified, you will
enter into BASIC, a welcome message will be displayed, and the BASIC
Ready prompt will appear on the screen. The “Ready” prompt will indicate
that BASIC is ready to accept any command that you wish to give it.

If you have rebooted the DOS 5 system, or have performed an exit from
BASIC to the operating system (usually done by issuing a CMD"S"
command), and wish to re-enter DOS version 5 BASIC, you may enter the
command:

BASIC *

at the DOS Ready level. Doing so will cause BASIC to be re-entered, and
any program that was resident in memory prior to performing the exit to
the DOS Ready level will remain intact. Be aware of the fact that if BASIC
* is used to re-enter BASIC from the DOS Ready level, any commands
which affect HIGHS, or any commands that utilize memory (such as
BACKUP and COPY) may cause your BASIC program to be overwritten

6

Interpreter BASIC - Editing and Program Maintenance

with other information. For this reason, BASIC * should only be used as a
last resort.

One of the following commands may be given if you wish to enter BASIC
with two files open and have memory protected up to location 61440
(X'FO00). Also, you wish to have the program MYPROG/BAS loaded and
RUN upon entering BASIC.

BASIC (Files=2,Mem=61440,) RUN"MYPROG/BAS" V5
BASIC (F=2,M=X'F000') RUN"MYPROG" V5
BASIC MYPROG/BAS (F=2,M=XF000’) Vé

Issuing either of the first two commands will produce the same results.
The second command above uses the abbreviations “F” and “M” for
“Files” and “Mem”. Note that the extension for the program
MYPROG/BAS nced not be specificd since EXT is ON. The third
command is used for DOS version 6 and will automatically run
“MYPROG/BAS”. Also, realize that for any of the above commands, if
HIGHS is lower than 61440 (X'F000'), an “Oul of Memory” error will occur,
and you will be returned to the DOS Ready prompt without entering BASIC.

Default Extensions

DOS version 6 BASIC provides no default file extension for use with
program management; however, it is recommended that you habitually use
an extension of “/BAS” to clearly differentiate your BASIC programs
from other files on your disks.

DOS version 5 BASIC allows you to utilize the default extension of /BAS
when issuing the LOAD, RUN, MERGE and SAVE commands. If the
EXT parameter is not tuned OFF when entering BASIC, all filespecs used
with the above commands that do not have extensions will be assigned the
extension /BAS. If EXT is on and an extension is specified, the extension
used in the filespec will override the default extension.

If EXT is ON and the file in question has no extension, it must be
specified as “filename/” (i.e. the “/” will override the default /BAS). If the
EXT parameter is turned OFF when entering BASIC, all file extensions
will have to be specified.

MISOSYS BASIC Reference Manual

File Blocking

BASIC provides a Blocked file mode (which has often been misnamed
Variable Length Files). This mode allows files with Logical Record
Lengths (LRL) of less than 256 bytes to be created and accessed. Any
record length from 1 to 256 bytes will be allowed, even if the record size
is not evenly divisible into 256. Blocked file mode is optional with DOS
version 5 BASIC; it is always in effect with DOS version 6 BASIC.

All blocking and de-blocking across *sector boundaries” will be performed
by DOS. In this way, user records can span across sectors to provide
maximum disk storage capacity. If the LRL is not specified when
OPENing a Random file, “256” will be assumed. Note that an LRL of “0”
will signify a 256 byte LRL.

If the Blocked file mode is ON, each file declared when entering BASIC
will take 546 bytes of memory (564 for DOS version 6 BASIC). If the
Blocked mode is OFF, each DOS version 5 file will take 290 bytes.

Program Protection

DOS version 5 BASIC programs may be protected with an “Execute only”
password. This means that the program may be RUN, but not LOADed,
LISTed, LLISTed, or otherwise examined. Any attempt to break the
program execution and examine the program will cause the program to be
erased from memory, and the message “Proleclion has cleared memory”
will be displayed. The DEBUGger will also be disabled during program
execution.

Single Stepping a BASIC Program

This DOS version 5 BASIC feature allows the BASIC programmer to step
through each program statement singly, with a “HOLD” after each step.
To invoke this feature simply do a normal pause (<SHIFT @>), which will
cause BASIC to go into a wait state. While continuing to hold down the
<SHIFT @> press the <SPACEBAR>, and the next BASIC statement will
execute. After execution of that statement the computer will immediately
go into its wait state again. Holding down the <SPACEBAR> will execute
statements at the normal keyboard repeat rate. If you press any key
without holding down the <SHIFT @>, normal program execution will
resume. Note that this feature also functions when listing a program.

8

Interpreter BASIC - Editing and Program Maintenance

Tape Access

Model I users need to disable the interrupts prior to performing tape 1/O,
and must re-establish them after the input/output has been performed. To
disable the interrupts, use the BASIC command - CMD"T" -. To enable
the interrupts, use the command - CMD"R" -. See the BASIC Statements
and Functions Section for more information on these two commands.

Model III users need to do one of several things, depending on the type of
tape involved. If you are dealing with a 500 baud tape, you will need to
specify the “LOW” parameter when entering BASIC (Remember, if
“HIGH” or “LOW" is not specified, the default will be HIGH). If you are
dealing with a 1500 baud tape, you will need to establish the HITAPE
utility. For more information on HITAPE, refer to the DOS manual.

High speed Load and Save

When using the normal SAVE or LOAD program commands for tokenized
(compressed) BASIC programs, disk I/O should be two to three times
faster than standard Microsoft BASIC. Programs saved with the ASCII
parameter will not enjoy this speed increase, either when saving or when
loading.

MISOSYS BASIC Reference Manual

Introduction to Compiler BASIC

To begin with, the Compiler BASIC Development System comprises a
minimum of five files. These are BC/CMD, CED/CMD, REF/CMD,
S/CMD, and SUPPORT/DAT. These files are DOS-specific, i.e. there is a
specific version for DOS 5 and another for DOS 6. Both versions are
distributed on standard DOS 40-track double density data diskettes.

BC/CMD is the actual BASIC compiler. It normally produces a directly
executable Z80 machine language /CMD file on compilation finish, from a
user-supplied source program. This compiled code uses an efficient
internal pseudo-code for the most part.

CED/CMD is a special line-oriented editor included should you desire to
use it. You can use an editor that you're familiar with if you so choose;
however, Compiler BASIC expects its input to be in either pure ASCII
form, with line numbers required for every line, or in its own specially
tokenized format, which is provided by CED/CMD. In addition to more
efficiently storing your source code in memory and on disk because of
Compiler BASIC keyword tokenization, CED (through S/CMD) allows
you to merely type “RUN” to semi-interactively compile and execute (if 0
errors are detected) your current program, returning control to CED on
program completion or compiler error abort.

S/CMD is a supervisor program required for the interactive “RUN”. It is a
small program that automatically loads and executes CED/CMD when it is
itself executed. Although CED can be used without S/CMD invocation,
interactive RUNs will be disallowed.

REF/CMD is the utility for generating the reference report.

SUPPORT/DAT is a relocatable library module, in a special format,
which contains support subroutines needed for various BASIC instructions
and utilities. They are appended as needed to the compiled program, thus
assuring that no wasted utilities are included.

These files comprise the fundamental Compiler BASIC system.
SUPPORT/DAT must be available on one of your disks during every
compile. Compilation will automatically be aborted if SUPPORT/DAT
isn't available. It is recommended that SUPPORT/DAT reside on a
different drive (say, drive :1) than the compiled program destination drive
(say, drive :0). This greatly reduces excessive disk drive repositioning

10

Interpreter BASIC - Editing and Program Maintenance

during the compilation process. For the same reason it is a good idea to
separate the source and object files on different disks. If using an
interactive editor RUN, you can pre-create TEMP/BAS, which holds your
source during compilation, TEMP/CMD, which holds the compiled
program, and TEMP/DAT, which holds the optional reference data file, on
different drives, to assure this.

Compiler BASIC acts as a translator between high level language, which
most people find easiest to program in, to faster Z80 machine language
(and pscudo-code), which most people find hard to program with.
Sometimes this translation is simple; sometimes it's pretty complex. An
experienced assembly language programmer can almost always produce
more efficient code than a compiler, including the so-called optimizing
compilers. Because a “core” of subroutines are included as needed, the
size of relatively short Compiler BASIC programs will be around 8-9k
larger than the source file. Lacking the time and/or money required to
write an assembly program from scratch to duplicate a high level program,
a compiler is a good compromise, and is quicker in any case.

Compiler BASIC Warranty

The Publisher of Compiler BASIC makes no guarantee as to the fitness of
Compiler BASIC, or programs generated by Compiler BASIC, for any
particular use, nor do we assume any liability whatsoever for any damages
that may arise directly or indirectly through the use of Compiler BASIC
and associated material such as this manual, including through
programming errors that may be found. Publisher's sole liability shall
consist of replacing magnetic media found defective by the buyer upon
first testing the distribution diskette. By using Compiler BASIC you imply
acceptance of these terms.

Compiler BASIC: General Information

Compiler BASIC is a compiler, which differentiates it from BASIC
interpreters included with your DOS. The essential difference is not so
much the structure of the languages themselves, but the manner in which
your computer executes any given program in the languages. The resident
BASIC in your machine must analyze program text every time it executes
a command. Compilers, however, translate program text into a format that
is better suited to machine interpretation than a straight BASIC program.

11

MISOSYS BASIC Reference Manual

Some compilers compile totally to “pseudo-code”, which is space efficient
but slow. Compiler BASIC is a true compiler; it compiles directly to Z80
machine language; however, an internal pseudo-code is used to link
program fragments with the system support library modules linked to a
program and called as subroutines.

Compiler BASIC is unique for DOS. Not only can the programmer take
advantage of a powerful high level language, but Z80 source code can be
intermixed with the language to any extent desired. Compiler BASIC, in
fact, is not only a compiler, but a Z80 assembler that allows powerful
algebraic expressions in source code statements, and takes advantage of
the high level language/machine language intermix ability, with special
functions that allow access to variable, line number, and label addresses.

Compiler BASIC is not guaranteed to translate your interpreted BASIC
programs unmodified into machine language. However, any differences
are slight and easily fixed to accommodate compilation. The large
repertoire of commands and functions make it likely that you will be
writing old programs over using these new features, rather than settling for
the capabilities of the disk BASIC interpreters.

Compiler BASIC retains many of the “nice” features of interpreted BASIC
that are excluded in other compilers. For example, the <BREAK> key is
functional during execution, if desired, and BREAKing a compiled
program will result in a BREAK message along with the source code line
number in which the interrupt occurred. Error messages at runtime display
the error code and the source code line number in which the error
occurred. Dynamic array allocation, up to fifteen dimensions [e.g. A(al,
a2, a3, ..., al5)], is allowed, as is dynamic string space allocation. All
standard BASIC variable types are supported (integer, single precision,
double precision, and string). Strings are not limited to 255 characters in
length; 32767 is the new string length limit. “FOR ... NEXT"" constructs
may have more than one NEXT for a single FOR, since error checking (in
this case) is done at runtime, not at compile time. More than one
dimension statement for the same array may occur in a program at once,
but an error message will be issued at runtime if more than one of the
dimensions are executed.

Compiler BASIC Directives

Compiler directives are not “true” commands. They simply tell the
compiler, at compile time, to do some task. The directives pertinent to the

12

Interpreter BASIC - Editing and Prograim Maintenance

program code stream will be discussed here. All of the compiler directives
will be discussed in this section.

HIGH-MODE

This puts the compiler into High Level Compilation mode. “HIGH-
MODE?" is the default compilation mode. The compiler will be looking for
only “high level” BASIC commands and functions in this mode.

Z80-MODE

This puts the compiler into Z80 Assembler mode. High Level commands
will generate expression errors in this mode. Only valid Z80 opcodes and
assembler directives will be recognized. Source code line inclusion and
BREAK key checking will be disabled in this mode.

High Level Statements

Statements are instructions that perform some specific task, and exist as
independent entities; as opposed to functions, which are used inside
algebraic or string expressions, and are not used independently. Statements
and functions may be used in High Level mode only (the default mode of
the compiler.) They will generate expression errors in Z80 mode.

High Level Functions

Functions are used with expressions. They are also used with statements;
however, a function is never used alone. In general, functions can be
divided into two main categories: String and Numeric. Naturally, these
categories are further divided into fairly reasonable groups of related
functions.

Compiler String Functions

Compiler BASIC internally uses a memory-efficient string list technique
to manipulate strings. This process is transparent to the user; it is worth
mentioning because PRINTs or LPRINTSs take up no extra string space
whatever when printing a string expression - except a small amount for
generative string functions such as HEX$ and BINS$. Additionally, string
assignments are fairly memory and time efficient due to the fact that string
literals and STRINGS functions take up no temporary string space during
the assignment; however, A$=A$+B$, say, requires that A$ and B$ take

13

MISOSYS BASIC Reference Manual

up temporary storage space due to extensive moving around of A$ and B$
during the assignment. However, the same expression, A$+B$, would take
up no temporary space if it was printed (PRINT A$+B$ or LPRINT
A$+B3), regardless of the combined length of A$ and BS$. In the same
way, LPRINT "--> "+STRING$(128,42)+" <--" would work with 0 bytes
cleared for string space.

14

Interpreter BASIC - Editing and Program Maintenance

Editing Interpreter BASIC Programs

Editing of Interpreter BASIC is performed, for the most part, while in the
BASIC interpreter. Compiler BASIC editing is performed using the CED
command. There are editing commands common to both Interpreter
BASIC and Compiler BASIC; however, in order to avoid confusion, all
Compiler BASIC editing facilities will be discussed via material
referencing the CED command; the material will duplicate some material
in this section.

Loading and Saving BASIC Programs
LOAD
The LOAD command allows you to retrieve a BASIC program that has

been stored on disk, and place it in the computer’s memory so that it may
be executed or edited. The syntax for the LOAD command is:

LOAD filespec$”[,R) Statement

filespec$ Designates the file to load; it may be a string
constant or expression. If represented as a string
constant, filespec must appear within quotes.

R Is an option to cause the loaded program to be
immediately RUN.

The “R” parameter is optional; if used, the program to be loaded will be
executed after it is loaded, and all open files from a currently loaded
BASIC program will remain open. Performing a LOAD without the “R”
option will cause any open files to be closed.

Loading a program will always overwrite any program in memory with the
program to be loaded. BASIC programs cannot be concatenated with the
LOAD command (see “MERGE” for program concatenation). The LOAD
command may be given from the BASK Ready prompt, or can be issued
from within a program. If issued from within a program, the program
issuing the LOAD command will be overwritten by the program to be
loaded, and execution will be terminated.

15

MISOSYS BASIC Reference Manual

For example, after execution of the command LOAD"MYPROG/BAS"

any program which was in memory will be replaced by the program
MYPROG/BAS.

SAVE

The SAVE command will allow you to save the program currently in
memory to a disk file. This will allow you to store programs on disk for
future use. The syntax for the SAVE command is:

SAVE"filespec”[,A] Statement 5
SAVE'filespec”[,A][,P] Statement 6

filespec Is the file specification you wish to assign to the
program file. It may be represented as either a string
constant or a string expression.

A An optional parameter to save the file in pure ASCII
format. If not specified, the program will be saved
“compressed” or tokenized format.

P An optional version 6 parameter that causes the file
to be saved in an encoded format. Such programs
are protected from listing or editing.

As BASIC programs are being written or edited, they are contained in the
computer’s memory. The SAVE command provides a way to save BASIC
programs which are stored in memory out to a disk file, so that they may
be referenced at some later time via the LOAD or RUN command.

When the SAVE command is given, one of two things will happen. If the
filespec in the SAVE command represents a non-existing file, SAVE will
create a file with the filename, extension, and password specified, and
store in this file the BASIC program currently in memory. If the filespec
in the SAVE command represents an already existing file, SAVE will
overwrite the existing file with the program in memory.

When the “A” parameter is not specified in a SAVE command, the
program in memory will be saved to a disk file in its compressed form (i.c.

16

Interpreter BASIC - Editing and Program Maintenance

token codes will be used to represent the BASIC commands and line
numbers). If the “A” parameter is specified in a SAVE command, the
program will be saved to the disk file in pure ASCII (e.g. the command
PRINT will take up five bytes of disk storage, one byte for each
character).

Note: When using the “A” parameter to save a program, no line in the
program should exceed 240 characters in length. If a program is saved
with the “A” parameter and a line in the program is longer than 240
characters, the program, when loaded, will load up to the line which is
longer than 240 characters, and the rest of the program will be
inaccessible. A Direct Slalement in File error will also be generated.

It should be obvious that saving a program in ASCII will consume more
disk space than saving the same program in compressed form, but there
are certain situations where a program must be saved in ASCII. One case
where you have to save a program in ASCII is if you wish to perform a
MERGE of a BASIC program stored on disk with a program currently in
memory. The program to be merged in from disk must have been saved in
ASCII, or the merge will abort with an error.

The SAVE command may be given either from the BASIC Ready prompt,
or may be incorporated as a command within a program. If used within a

program, the program will SAVE itself, after which normal execution will
continue.

Suppose you have keyed in a BASIC program, and wish to save this
program out to a disk file. The drive you wish to store this file on is drive
:1, and the name you wish to assign to this file is GOODPROG/BAS. One
SAVE command that may be used to accomplish this might look like this:

SAVE"GOODPROG/BAS:1"

If you wish to save this program in ASCII, the following command could
be used:

FS$="GOODPROG/BAS":SAVE FS$,A
Note in the above example that the filespec was represented as a string

variable. Also note that the “A” parameter must appear as a literal
constant, and cannot be expressed as a string expression.

17

MISOSYS BASIC Reference Manual

CLOAD and CSAVE

These statements are used to load or save a BASIC program stored on
cassette tape. The syntax is:

DOS 5 Interpreter BASIC

CLOAD(?] ["filename"] Statement
CSAVE ["filename"] Statement

filename Is the single-character name used to identify the
program file on tape. The name can be any alpha-
numeric character other than “"”. The name is
mandatory for a CSAVE; if omitted for a CLOAD,
the first program found will be loaded.

? Used to compare a program on tape with the one
already loaded into the computer.

18

Interpreter BASIC - Editing and Program Maintenance

Abbreviated Commands

A few of the BASIC commands may be represented as single characters.
When using a single character command, the effect will be identical to
using the entire word. This abbreviated form is only acceptable when
typed on a command line, not in a program line or JCL file.

Interpreter BASIC Single-key edit commands

<> Cursor up one line

<> Cursor down one line

<&=> Cursor to first line

<> Cursor to last line

<> Display current line

<> Edit current line

<A> nlf,inc] AUTO: AUTO line nl with increment
<C>nl,n2 Copy line n1 to line n2

<D> nl[-n2} DELETE: Delete line(s) nl through n2
<E>nl EDIT: Edit line nl

<F> Object Find all object (line#, var, keyword)
<L> nl[-n2] LIST: List line(s) nl through n2

<M> nl,n2 Move line n1 to be line n2 5
<M> nl,n2,n3 Move lines n1-n2 to be follow n3 6
<5> Object Find next object (lineft, var, keyword) 6

(=)

In the case of “A” for AUTO, “D” for DELETE, “E” for EDIT, and “L”
for LIST, these commands work exactly as their full length counterparts,
except that no space is necessary between the letter and the line num-
bers. For example, “L100-300” is the same as “LIST 100-300",

Under DOS version 6 BASIC, you may get “LIST OCATE”,
“EDIT”, “DELETE”, or “AUTO" at the beginning of some line
in your BASIC program. This may occur when you are loading in
a program from some other source in ASCII format. If the first
word in the line is not a reserved keyword, and the first letter of
the word is an “A”, “D”, “E”, or “L”, that first letter is expanded
to “AUTO”, “DELETE”, “EDIT”, or “LIST”, respectively. The
way to correct it is to edit the word.

19

MISOSYS BASIC Reference Manual

The following six “immediate” key commands are implemented by
pressing the indicated key as the first character in the command line. No
carriage return is necessary; the indicated action will take place
immediately. Note that any of the following single key commands must be
the first character entered after the “Ready” prompt appears.

. (period) This will perform the same function as “LIST.<ENTER>",

which will instruct BASIC to list the currently active
line.

,(comma) This will perfoom the same function as
“EDIT.<ENTER>”, which will instruct BASIC to enter the
“edit mode” for the currently active line.

<f> This will cause BASIC to display the next lower
numbered line in the program.

<l> This will cause BASIC to display the next higher
numbered line in the program.

<¢=> This will cause BASIC to display the first line of the
program.

<=> This will cause BASIC to display the last line of the
program.

Initiating automatic input mode

The AUTO statement initiates automatic input mode with line numbering.
Its syntax is:

Auto [linenumj(,increment] Statement

linenum s the BASIC line number to start input; if omitted,
*“10” will be used.

increment Is the interval between line numbers which will
be assigned; if omitted, “10” will be used.

20

Interpreter BASIC - Editing and Prograim Maintenance

AUTO is the standard way of initiating the input of program lines. This
procedure automatically displays the current input line number and awaits
your input. If the current line number is a line already in your program,
AUTO will display an asterisk, “*” following the line number. The new
line typed will replace the previous program line.

When you complete your entry, the <ENTER> causes BASIC to add your

new program line to the existing program, if any, and displays the next
line number according to the increment.

When you have completed entering your program lines, press <BREAK> to
terminate AUTO and return to the BASIC prompt.

A program line may also be entered without using AUTO by typing a line
number followed by the program line.

Deleting program lines

The DELETE statement is used to remove one or more lines of a program.
Its syntax is:

Delete linel[-line2) Statement

linel A single line to delete or the first line number of
arange of lines.

line2 The last line number of the range of lines to delete.

For example, the statement DELETE 110 will remove the single line
numbered 110. DELETE 120-200 will remove all lines numbered 110
through the line numbered 200

Editing existing BASIC program lines

This EDIT interpreter BASIC statement is used to invoke the source
program line editor.

21

MISOSYS BASIC Reference Manual

Edit line Statement

line Is the number of the line you wish to edit.

The EDIT command allows editing of a particular line on a mostly
conceptual basis (as opposed to directly perceptual screen editing.)
Fundamentally, editing is done by single letters, which switch the editing
mode when appropriate. Initially, only the line number is shown; the
cursor is placed at the beginning of the line. This is the edit command
mode.

Summary of internal edit commands
<space> Skip over next character, displaying it
<e=> In edit mode: Move cursor left nondestructively
<e&=> In insert mode: Move cursor left destructively
A Leave the edit with the old line untouched
C<char> Change characters
D Delete character
H Hack line
I Go into insert mode
K<char> Delete up to <char>
L List rest of line and restart edit on new line
S<char> Move cursor to occurrence of <char> after cursor
X Move cursor to end of line, start insert mode

To non-destructively move the cursor over the line and to display it one
character at a time, press the <SPACEBAR>. The cursor won't move past
the end of the line once the last character has been displayed. To non-
destructively move the cursor backwards, press the <BACKSPACE> key.
Once again, once the first character has been moved over, the cursor won't

move. The “space” and the “backspace” can be seen as single letter
commands.

To list the entire line and then restart the edit at the beginning of a new
line, type <l>. Doing this twice will show you a *“clean” version of the
line you’re working with. ‘

22

Interpreter BASIC - Editing and Program Maintenance

To insert new characters into the line, position the cursor to the desired
point (directly over the point of insertion) and type <I>. Then, any charac-
ters typed will be inserted into the line at that point; what you see from the
line number on will be the start of the new line. Any backspaces in inser-
tion mode are destructive. To stop the insertion and go back to the edit
command mode (the initial mode), press the <ESC> key (or <SHIFT-I>).

To delete characters, position the cursor directly before the character to be
deleted and type <D> (in the edit command mode.) The character just
deleted will be printed between slash marks.

To totally restart the edit from scratch, and call up the line as it was

initially before your editing, type <A> in edit command mode. The edit
will be restarted on the next line.

To “hack” the rest of the line at any given point, type <H>. The cursor
will then be placed at the end of the line and insert mode will be on.

To change a character *“under” the current cursor position, type
<C><char>; the character will be changed to “char”.

To delete all characters from the character “under” the cursor up to and
including a particular character, type <K><char>.

To move the cursor to the end of the line and go into insert mode, type
<X>.

To move the cursor to a particular character in the line after the cursor
position, type <S><char>. If the specified character is not on the line, the
cursor will be moved to the end of the line. If it is, the cursor will be

placed “over” that character. In either case, edit command mode will still
be active.

Note that pressing the <ESC> key or its equivalent <SHIFT-fI> will almost

always abort the current command and cause a return to edit command
mode.

Once all editing has been completed and you're satisfied with the results,
hitting <ENTER> will enter the new line in place of the old one. If you
want to leave the line alone, type <A> in edit command mode followed by

23

MISOSYS BASIC Reference Manual

<ENTER>; the line will be unchanged. Hitting <BREAK> will also cause
an escape without changing the old line.

As alluded to earlier, typing a number before most commands will cause
that command's action to be done that number of times. For example,
typing <1><2><SPACE> essentially causes the space command to be
done twelve times. If the end of the line isn't reached, the cursor will skip
over twelve new characters. To delete six characters, say, type <6><D>.
To “erase” a number just typed and essentially set it back to one, type
<ESC> or its equivalent.

With the <S> and <K> commands, the specified number of characters will
be searched before the command's action is done. For example,
<2><S$><A> will skip the cursor over the first “A” encountered in the line
and place it over the second one found (or the end of line, whichever
comes first.) And, say, <3><K><I> will delete all characters from the one
“under” the cursor to the third “I” found in the line after the cursor,
inclusively - or until the end of the line is reached.

With the <C> command, the specified number of characters will be
modified. If the end of the line is reached, edit command mode is enabled.

Deleting a disk file

KILL will delete the designated file from the disk directory. Its syntax is:

KiLL"filespec$” Statement

filespec$ Designates the file to remove; it may be represented
as a string constant or a string expression.

The KILL command will allow you to delete a file from a disk directory,
making that file inaccessible, and freeing up the space on the diskette that
the file consumed. The KILL command functions identically to the DOS
commands “KILL” or “REMOVE”.

24

Interpreter BASIC - Editing and Program Maintenance

Suppose you wish to remove the file MYFILE/DAT from the diskette
currently in drive 1, and free up the space consumed by that file. The
following command will perform this function.

KILL"MYFILE/DAT:1"

Realize that after the deletion is performed, you will no longer be able to
access any information which was previously stored in the file. Also note
that since the filespec is being represented as a string constant, it must be
enclosed in quotes.

Listing programs

The “LIST” statement is used to display one or more lines of your source
program to the video screen; “LLIST” directs the listing to the line printer.
Their syntax is:

LIST [{linel][-]{line2] Statcment
LLIST {line1](-]{line2] Statement

linel This is the first line of a range of lines to list.

line2 This is the last of a range of lines to list.

Specifying “LIST” or “LLIST” with no parameter will list the entire

program. You can list a portion of the program using one of the following
forms:

line List a single line

line- List from line to the end

-line List from the beginning to line
linel-line2 List from linel through line2

25

MISOSYS BASIC Reference Manual

Clearing the resident program

NEVW deletes the current program from memory. Its syntax is:

NEW There is no operand! Statement

Renaming a file

NAME is a DOS 6 interpreter BASIC statement used to rename a disk
file. It operates like the DOS RENAME command. Its syntax is:

DOS 6 Interpreter BASIC
NAME oldnam$ AS newnam$ Statement 6
oldnam$ Is the current name of the file to be renamed.

newnam} Is the new desired name.

Copying, Moving, and Searching

The following four commands are contained in the BASIC/OV?2 file of
DOS version 6. The two edit commands of DOS version 5 BASIC are
contained in the BASIC/OV3 overlay file. This file must be present when
using these commands, or a File nol found error will occur. Like other
BASIC editing commands, the use of these will clear all variable values
and close any open files.

The Copy command will duplicate a single line. Its syntax is:

|C Num1,Num2 |

Numl is an existing line number to be copied. Num2 is the line number to
create, and must not already exist. No renumbering will be done after the
copy. If the line numbers are incorrect, an lllegal funclion call error will
occur.

26

Interpreter BASIC - Editing and Program Maintenance

The DOS version 6 BASIC Find command finds all references to a line,
variable or keyword. Its syntax is:

DOS 6 Interpreter BASIC
F Object

Object Isa line number, variable name, or keyword.

Object is either a line number, variable, or keyword. The space after the
“F” is mandatory when finding keywords. The resulting display will be all
linc numbers containing the referenced object. When finding variables,
only the first 10 characters of the variable name will be significant. Also,
type declarations 1,%,#,$,(must be used. For example, the command
“F A” would not find A$ or A(.

The Move command moves a single line (DOS version 5 BASIC) or a
block of lines (DOS version 6 BASIC). Its syntax is:

Interpreter BASIC
M Num1,Num2,Num3 6
M Num1,Num3 5
Numl Is the number of the first line to move.

Num?2 Is the number of the last line in a block of lines.

Num3 Is the line preceding the new block location or the
new line in the case of a DOS 5 BASIC.

Under DOS 6 BASIC, Numl and Num2 are existing line numbers and
define the block of lines to be moved. Num2 must be greater or equal to
Numl. Num3 is an existing line number and is the line to insert the moved
block after. The moved block of lines will be renumbered by one, and all
references to these lines (if any) will be corrected. If there is not enough
room in memory to move the lines, an OQul of memory error will occur. If
this happens, do multiple moves of smaller pieces. If the line numbers are
non-existent or if there is not enough room between Num3 and its

27

MISOSYS BASIC Reference Manual

following line to fit the block, an lllegal function call error will occur. For
example, if you had program lines 100 and 110, a block of lines moved
after line 100 could be no more than 9 lines long.

Under DOS version 5 BASIC, line Numl is moved to be line Num3. no
automatic renumbering of imbedded line number targets is done so you
will still have to adjust the targets of any GOTOs, GOSUBs, etc.

The DOS version 6 BASIC Search command will search the program
and display a reference to a line number, variable name, or
keyword. Its syntax is:

DOS 6 Interpreter BASIC
S [Object]

Object Is a line number, variable name, or keyword.

Object is a line number, variable or keyword. The first line containing the
object will be displayed. The space after the S is mandatory when
searching for keywords. The S with no object following will search for the
next occurrence of the previous object. Like the “Find” command,
variables are limited to 10 significant characters, and any explicit type
declarations must be used.

28

Interpreter BASIC - Editing and Program Maintenance

BASIC Program Renumbering

This DOS interpreter BASIC feature will renumber BASIC program line
numbers as well as correctly adjusting all line number references such as
GOSUB and GOTO. The syntax is:

Interpreter BASIC

CMD"N ! line,newline,inc,last" Statement 5
RENUM [newline]([line] [,inc] [last]] Statement 6

! Optional V5 parameter to skip the complete scan
for errors before renumbering begins.

newline s the new starting line number of the program,; if
omitted, the default is line 10 for V6 and 20 for V5.

line Is the starting line number of the program lines to
renumber; if omitted, the entire program is
renumbered, i.e. line=1, and last = 65529.

inc Is the line number increment between lines; if
omitted, an increment of 10 for V6 and 20 for V5
is used.

last Is the last line of the program to be renumbered;

if omitted, renumbering occurs to the end.

When you have two existing program lines whose line numbers differ by
one, and you want to insert another line between them, you must change
the existing line numbers. The RENUM or CMD"N..." statement allows
for renumbering program line numbers, which is a useful operation during
program development. This feature will allow you to renumber all or parts
of the BASIC program currently in memory. The lines to be renumbered
can be anywhere in the program. If used, all references in GOTO's,
GOSUB’s, etc., will be properly adjusted. However, if the parameters you
use would result in the renumbered lines being out of sequence, a Bad
paramelers or lllegal funclion call error will occur.

29

MISOSYS BASIC Reference Manual

For DOS version 5 BASIC, you cannot have a line number zero (0) if
renumbering a program. Also, Both BASIC/CMD and BASIC/OV1 must
be present on the disk, or a “Program Not Found” error will occur. If you do
not specify the exclamation point, “!”, character, a full scan for errors will
be done before the renumbering starts. If errors do exist, no lines will be
changed. It is usually much easier to fix the errors before the lines are
renumbered! If you do specify the *“!”, any error found will still abort the
renumbering. However, all internal line number references will have
already been changed up to the line that cause the error. Do not use the “!”
parameter unless you are absolutely sure that no errors exist.

For example, the statement:

RENUM 1000,500,10,600 Vé
CMD"N 500,1000,10,600 V5

will renumber the lines between 500 and 600 only, making new line
numbers starting at 1000 with an increment of 10.

30

Interpreter BASIC - Editing and Program Maintenance

BASIC Cross Reference Utility

The cross reference facility will allow you to produce a list of the variable
and line number references of an BASIC program. DOS version 5 provides
this facility as BASIC’s “CMD"X"” statement; BREF/CMD is the DOS
version 6 BASIC cross reference utility which is executed at the DOS Ready
prompt, not from inside of BASIC. The BASIC program must not have
been saved in ASCIIL.

The DOS 6 syntax is:

DOS 6 Interpreter BASIC

BREF filespec ((Var=sw,Line=sw,P=sw,W=n))

Var= Cross references variables; the default is ON.
Line= Cross references line numbers; the default is OFF,
P=ON Directs the output to a printer; the default is OFF.
W=n Sets a width for printer output; the default is 80.

The filespec is the name of the BASIC program. The VAR parameter
allows variables to be cross referenced. The LINE parameter includes a
cross reference of line numbers. The P parameter allows the listing to go
to a printer rather than the video. The W parameter can be used to specify
the number of columns for the printer (generally either 80 or 132, although
any values between 32 and 255 will be accepted).

Variable names will be displayed up to 14 characters. If the variable is
longer than this, the remaining characters will be truncated for display.
BASIC stores certain keywords in ASCII, and this makes them
indistinguishable from a variable. For example, the “AS” used in field
statements is stored in ASCII rather than a token. This will cause these
words to be displayed in a variable cross reference list.

If there are more references than can be displayed on a single line, they

will wrap to the next line. This line will have an asterisk in column one to
denote the overflow.

1

MISOSYS BASIC Reference Manual

The command, BREF PROG/BAS, sends only variable references to the
video. The command, BREF PROG/BAS (LINE,VAR=OFF), sends only
line number references to the video. BREF PROG/BAS (LINE,P,W=132)
Sends variables and line numbers to a 132 column printer.

If you try to use a program saved in ASCII, a program saved in the
protected mode, or a non-BASIC program file, the error message, Nol ¢
BASIC program, will be generated by BREF.

If the program is too large to fit into your available memory, the error
message, Out of memory — can’t cross reference, will be generated by
BREF. The cure is to change your configuration to free up some memory.

The message, Line nnnn, Error in original program, may occur if there is a
syntax error in the original BASIC program. The line number should
correspond to that line in the program.

The syntax of the DOS 5 BASIC CMD"X" feature is:

DOS 5 Interpreter BASIC
CMD"X devspec/filespec -V |=var,-L | =Inum,<litle>"

devspec Is the device or file the listing will be sent to.
filespec If not specified, it will go to the video screen.

-V All Variables.
=var Only the variable specified.
-L All Line numbers.

=lnum Only the line number specified.

«litle> Isadtitle to be printed on the top of each page.

Both BASIC/CMD and BASIC/OV2 must be present on a disk or a
“Program Not Found” error will occur. You cannot have a line number zero
(0) if you wish to use the cross reference utility.

32

Interpreter BASIC - Editing and Program Maintenance

This list may be sent to any device in the system, such as the *DO (video
screen), *PR (line printer), etc. It may also be sent directly to a specified
disk file. I[f sent to a file, CMD"X" will use the default extension of /TXT.

Parameters are allowed to determine which variables or line numbers will

be listed. If no parameter is specified, all variables and line numbers will
be cross referenced.

If you wish a title to be put on the top of every page in the list, it must be
specified between less-than/greater-than symbols in the command line.

Listing program variables

The DOS version 5 CMD"V" BASIC extension can be used to dump a list
of active variables and their values and user defined functions while a

program is running (or after it was interrupted or ended). The syntax of
this command is:

DOS 5 Interpreter BASIC
CMD"V [*DOI"PR] [-S] [-A] [=x]"

*DOI®PR Designates the output to either device [*DO]

-S Restricts output to scalars only.
-A Restricts output to array variables only
=X Restricts output to variables starting with “x”.

33

MISOSYS BASIC Reference Manual

BASIC Compiler: Editing and Compiling
CED General Information

The Compiler BASIC editor differs somewhat from the interpreter BASIC
editor. However, all internal editing commands (with the “E” command)
are the same. The significant difference between the interpreter BASIC
editor and the Compiler BASIC editor is that the latter recognizes two
types of line numbers: editing line numbers, and BASIC line numbers.
Any individual line may carry a distinctive line number, treated as a
BASIC line number; for this reason, standard ASCII BASIC programs can
be loaded into the Compiler BASIC editor. Every line is numbered from 1
through “n” in steps of one; also, where “n” is the total number of program
lines. Not every line has to have a BASIC line number, but with every line
is associated an edit number, representing its position relative to the
beginning. This carries the advantage of never having to renumber due to
line numbers too close together; the disadvantage lies in the fact that
“renumbering” occurs automatically whenever you insert, delete, copy, or
move lines - so you must therefore keep track of where you are in the
program.

If multiple (edit) line number expressions are needed by a command, they
are always separated by commas. An edit line number expression can
consist of a decimal number, or the letter ““T” to represent “1” (the top), or
“B” to reference the bottom (last) line. Note that “DET,B” deletes your
entire program (DElete from Top to Bottom) - the same as a “NEW”.

To recover from an unforeseen accident during a compiled program run,
recall that your source text is always saved in “TEMP/BAS” if
compilation was invoked from edit mode. All you have to do is reload it.

NOTE: Unless otherwise mentioned or clearly implied by the context,
references to line numbers are EDITOR line numbers.

? exp

This command will print the integer result of the expression, “exp”.

34

BASIC Compiler - CED Editor and BC Compller

?F

This command will print the filename of the file currently being edited.

/ editor_line_number, BASIC_line_number

This command will add the specified BASIC line number to the line
identified by the given editor line number.

< BASIC line number

This command will remove the specified BASIC line number from
whatever cditor line it is on (if it exists).

BLH

The “BASIC Line Hide” command will suppress the display of all BASIC
line numbers.

BLS

The “BASIC Line Show” command will restore the display of BASIC line
numbers.

35

MISOSYS BASIC Reference Manual

C start_line,end_line,deslination_line

This command will copy a block of lines from the “start_line” to the
“end_line” (inclusive), inserting at the “destination_line".

DE linel <,line2> (DL... for BASIC line #s)

The “DE” command will delete a single line identified by “linel””; or the
multiple lines identified by “linel” through “line2”, if “line2” is given.
Using “DE”, the line numbers entered for the deletion refer to EDITOR
line numbering. If you wish to delete a line or lines according to their
BASIC line number(s), specify the delete command as “DL” in lieu of
“DE”.

ELH

The “Editor Line Hide” command will suppress the display of EDITOR
line numbers. This is the default mode of CED.

ELS

The “Editor Line Show” command will restore the display of EDITOR
line numbers.

ERROR ernrcode (or ERR errcode)

This command will display the full emor message of the given runtime
code denoted by “errcode”.

36

BASIC Compiler - CED Editor and BC Compiler

Fstring

Beginning at the current line+1, this command searches through the text
for the specified string. The line which contains the string is listed if a
match is found, otherwise “Slring nol found” is issued and the search stops.
Important note: Do not include any spaces after the “F”’ command unless
they are part of the search string.

Entering a NULL string for CED’s Find and Search commands results in
finding/searching the next occurrence of the previous find/search string, if
any.

This command causes an exit from the editor and a return to DOS.

Edit <'sting'> <linerange> for BASIC line #'s
ED <'slring’> <linerange> for editor line #’s

The “EDIT” (or abbreviated as “E”) command is the most sophisticated of
the edit commands, not surprisingly. It allows intra-line editing of a
particular line or set of lines on a mostly conceptual basis (as opposed to
directly perceptual screen editing.) Users will recognize the format of the
command, since it is essentially the same as the line EDIT function of the
BASIC language on most 8-bit computers.

Note that with the “E” (or “EDIT”) command, numbers refer to BASIC
line numbers; with the “ED” command, numbers refer to editor line
numbers. Otherwise, all material in this description is precisely the same
for both commands.

Fundamentally, editing is done by single letters, which switch the editing
mode when appropriate. Initially, only the line number is shown; the

37

MISOSYS BASIC Reference Manual

cursor is placed at the beginning of the line. This is the edit command
mode.

Summary of internal edit commands
<space> Skip over next character, displaying it
<> In edit mode: Move cursor left nondestructively
<e=> In insert mode: Move cursor left destructively
A Leave the edit with the old line untouched
C<char> Change characters
D Delete character
H Hack line
I Go into insert mode
K<char> Delete up to <char>
L List rest of line and restart edit on new line
S<char> Move cursor to occurrence of <char> after cursor
X Move cursor to end of line, start insert mode

To non-destructively move the cursor over the line and to display it one
character at a time, press the space bar. The cursor won’t move past the
end of the line once the last character has been displayed. To non-
destructively move the cursor backwards, press the backspace key. Once
again, once the first character has been moved over, the cursor won’t

move. The space and the backspace can be seen as single letter
commands.

To list the entire line and then restart the edit at the beginning of a new
line, type <L>. Doing this twice will show you a “clean” version of the
line you’re working with.

To insert new characters into the line, position the cursor to the desired
point (directly over the point of insertion) and type <I>. Then, any charac-
ters typed will be inserted into the line at that point; what you see from the
line number on will be the start of the new line. Any backspaces in inser-
tion mode are destructive. To stop the insertion and go back to the edit
command mode (the initial mode), press the <ESC> key (or <SHIFT-1>).

38

BASIC Compiler - CED Editor and BC Compiler

To delete characters, position the cursor directly before the character to be
deleted and type <D> (in the edit command mode.) The character just
deleted will be printed between slash marks.

To totally restart the edit from scratch, and call up the line as it was
initially before your editing, type <A> in edit command mode. The edit
will be restarted on the next line.

To “hack” the rest of the line at any given point, type <H>. The cursor
will then be placed at the end of the line and insert mode will be on.

To change a character “under” the current cursor position, type
<C><char>; the character will be changed to “char”.

To delete all characters from the character *“under” the cursor up to and
including a particular character, type <K><char>,

To move the cursor to the end of the line and go into insert mode, type
<X>.

To move the cursor to a particular character in the line after the cursor
position, type <S><char>. If the specified character is not on the line, the
cursor will be moved to the end of the line. If it is, the cursor will be

placed “over” that character. In either case, edit command mode will still
be active.

Note that pressing the <ESC> key or its equivalent <SHIFT-I> will almost

always abort the current command and cause a return to edit command
mode.

Once all editing has been completed and you’re satisfied with the results,
hitting <ENTER> will enter the new line in place of the old one. If you
want to leave the line alone, type <A> in edit command mode followed by
<ENTER>; the line will be unchanged. Hitting <BREAK> will also cause
an escape without changing the old line.

Optionally, you can, initially, specify two parameters. If you specify a
range of lines, a succession of edits will occur. In this case, after you type
<ENTER> or <A> to enter or escape from the edit, the next line will be
edited. However, typing <BREAK> will cause a return to the editor

39

MISOSYS BASIC Reference Manual

command mode.

With Compiler BASIC, you can also specify a string which will be entered
just as if you had typed it in at the beginning of the edit. For example,
entering:

EL10

would edit line 10, displaying it first, because of the <L> edit command.
Note that the apostrophes are actual characters to be typed, not
documentation syntax marks.

This is really only useful when a range of lines is specified. Then, you can
automatically edit them without tediously typing the edit commands for
each line. A left bracket, “[”, in the string is taken to mean an <ENTER>,
so entering, for example:

E'l;['15,20

would insert a semi-colon at the beginning of lines 15 through 20
inclusive, editing each line automatically. This particular command would
be useful to temporarily convert a range of Z80 assembler source lincs to
comments. Later, the semi-colons could just as easily be deleted by
entering:

ED['15,20

Note that if the parameter “T,B” (without quotation marks) is specified for
the line range, the entire program will be edited.

As alluded to earlier, typing a number before most commands will cause
that command’s action to be done that number of times. For example,
typing <1><2><SPACE> essentially causes the space command to be
done twelve times. If the end of the line isn’t reached, the cursor will skip
over twelve new characters. To delete six characters, say, type <6><D>,
To “erase” a number just typed and essentially set it back to one, type
<ESC> or its equivalent.

With the <S> and <K> commands, the specified number of characters will
be searched before the command’s action is done. For example,
<2><8><A> will skip the cursor over the first “A” encountered in the line
and place it over the second one found (or the end of line, whichever

40

BASIC Compiler - CED Editor and BC Compiler

comes first.) And, say, <3><K><I> will delete all characters from the one
“under” the cursor to the third “I” found in the line after the cursor,
inclusively - or until the end of the line is reached.

With the <C> command, the specified number of characters will be
modified. If the end of the line is reached, edit command mode is enabled.

Hlinel <line2>

This command will print “linel” (through “line2” if given) on your
printer. If the printer is unavailable, hit <BREAK> to escape.

I line_number |

This command will begin insertion of lines at the specified line number.
Hit <BREAK> to escape inscrt mode. Note that no BASIC line number is
attached to these lincs.

|k:filespec l

This command will “Kill” (remove) a file from disk. Note the use of the
mandatory colon, “:”, in the command syntax.

L:[(insert line)] filespec [,linel [,line2]]

This command will load source text from disk into memory. Note the use
of the mandatory colon, *:”, in the command’s syntax. Note also that line
numbers are EDITOR line numbers. If “filespec” is omitted, the current
file is loaded. The “current” file is noted by “7F”. The simplest form of

this load command is, for example:
"L:.TEMP/BAS"

TEMP/BAS will be either loaded into memory if there’s nothing in the
text buffer, or appended onto the end of the current text.

11

MISOSYS BASIC Reference Manual

If “(insert line)” is specified, the disk file will be inserted into that point in
the current text.

If “linel” “,line2” is/are given, only “linel”, or “linel through line2”
inclusive, is/are loaded from the disk file (relative line numbering is used).
For example:

L:(10)SOURCE1/BAS
inserts “SOURCE1/BAS” starting at line 10.
L:CHESS80/BAS,50,177

loads or appends lines 50 through 177 from the “CHESS80/BAS” file.
Loading stops automatically if less than 177 lines are in the file.

L:(184)NWAR/BAS, 15,40

This is a combination of insert/selective loading. Lines 15-40 from
“NWAR/BAS” are inserted at the current line number 184.

CED accepts either a pure ASCII file or its own tokenized format. Since
BC can be used without regard to the CED editor, it also accepts either
pure ASCII files or CED’s tokenized files as its source stream input.
Please don’t expect to edit a BASIC program for use by BC with the
interpretive BASIC editor. The tokenization of interpretive BASIC will
create problems.

LIST linerange

This command will list a range of lines to the video screen; numbers given
by “linerange” refer to BASIC line numbers.

LLIST linerange

42

BASIC Compiler - CED Editor and BC Compiler

This command will print a range of lines on your printer; numbers given
by “linerange” refer to BASIC line numbers.

Mlinel,line2,destination_line

This command is similar to “C”opy, except that lines are moved rather
than duplicated.

N (line[,lost[,newline(,inc]]]]

This command renumbers the BASIC lines of a program. Four optional
parameters are allowed. The first two are the current line range to
renumber. The third is the new starting number. The last is the line
increment. The dcfault values are 0,65535,100,10. For example:

N 100,300,10,10

would renumber all lines in the range 100-300 inclusive; the first line then
being 10, the next 20, etc.

N ,,100,5

would renumber the whole program, starting at 100 and advancing in
increments of 5.

NEW

This command effectively does a delete of text from top to bottom
clearing out the entire text buffer.

o

43

MISOSYS BASIC Reference Manual

This command will begin appending lines without BASIC line numbers.

Plinel(,line2)

“P” lists “linel” or “linel through line2” to the screen. If no parameters
are given, then 15/23 lines starting with the current line are listed.

Q [drivenum]

This command will display a directory of files on the disk drive specified
as “drivenum”, If “drivenum” is omitted, drive :0 is assumed.

Rlinel|,line2]

“R” will replace “linel” or “linel through line2”. The current line is
printed; insert prompt allows new replacement line to be entered. Once
line(s) are replaced, control passes automatically into insert mode.

RUN

This command starts a chain of events if the compiler editor is invoked in
the supervisor mode (i.e. from “S/CMD”). First, source text is saved in the
file named, “TEMP/BAS”. Then it’s compiled into “TEMP/CMD". If the
compilation is successful, “TEMP/CMD” is invoked; if not, control passes
to the editor, with source reloaded. This also happens when the runtime
program terminates in an acceptable (END/STOP/BREAK) way.

44

BASIC Compiler - CED Editor and BC Compiler

S(string]

This command operates the same as “Fstring” except the search starts at
the beginning of the text instead of line+1. Entering a NULL string for
CED’s Find and Search commands results in finding/searching the next
occurrence of the previous find/search string, if any.

This command provides memory usage. It displays number of bytes used
and bytes free.

Vi#|filespec [linel],line2]]

This command allows you to display lines from the specified disk source
text file. The “V” command permits viewing the “‘current” file if
“filespec” is omitted. Thus, V<ENTER> displays the current ASCII file,
whereas, V#<ENTER> displays the current compressed file. The “current”
file is noted by “?F".

W:[#]filespec [linel[,line2]]

This command writes text from memory to the specified disk file in
compressed (tokenized) format. Note the use of the mandatory colon, *“:”,
identified in the command’s syntax. If line parameters are omitted, the
entirc text is saved. If line parameters are given, only those lines are
written to the file. If “filespec” is omitted, the current file is written. The

“current” file is noted by “7F”.

You can also use the syntax, W:#ilespec<,linel<,line2>>, to write an
ASClII file (i.e one not tokenized).

45

MISOSYS BASIC Reference Manual

X/replacement$/search$

This command will search and replace all occurrences of the search$
string with the replacement$ string. The search will begin at the current
line number. A <BREAK> stops the command. Note that only one
replacement per line is done. For example:

X/ent/ant

replace all occurrences of “ant” with “ent”.

Y=linespages[,pagelength]

This command will change printer forms control parameters (for LLIST,
H) to do a top_of_form, “TOF", after “linespages” lines. If “pagelength” is
given, this will define the number of lines total for each page of the paper
you're using in your printer (usually 66).

Invoking the REF/CMD utility

The Compiler BASIC REF utility provides a printed reference of memory
use for five aspects of your program: variables, user defined functions,
user defined commands, symbols and labels, and source line numbers. The
listings are generated from the reference data file created by the compiler
when the “WD” compiler directive is invoked.

The general format of a REF/CMD invocation is:

46

BASIC Compiler - CED Editor and BC Compiler

Compiler BASIC
REF filespec|[/DAT][,-V-L]
filespec Is the reference data filespec.
-V Directs the REF output to the video screen.

-L Generates the symbol/label table. The default is
to suppress the symbol/label table.

The two command switches, “-V”” and “-L”, are optional. If either or both
is entered, a comma must immediately follow the reference filespec. The
“-V” switch is used to have the reference output appear on the video
screen instead of the printer. The “-L” switch is used to have the
“symbol/label” table included in the reference output.

The following represents excerpts from a given reference report. Note that
all tables are alphabetized for easy reference. The five possible reports
will each start on a new page. The first report will list all BASIC
variables, identify each variable as to its type, and then list the starting
memory address used to store the variable’s value. A sample report is:

CROSS REFERENCE REPORT using CHEBYCO:4, --- VARIABLE LIST page 1.1
! = SINGLE, % = INTEGER, # = DOUBLE, $ = STRING

A! : SEDIH AS : SFI9H Al# : 60SSH A2 : 604DH
A3d : 6045H AP# : SFDSH B#(1#) : SFA9H BP# : SFDDH
C#(1#) : SFAIH CN} : 60B9H cP# : SFESH CcsSt : 60C1H

HS$: SF9DH I! : 60AlH Jt : 6029H Ki : 600DH

L! : 60ASH Nl : 6005H N1l : 6039H N2! : 6009H
NC! : 606SH NT! : 603SH P# : 6099H PA#(19) : SFCOH
PA} : 60ELIH RHO® 1 6091H RT# : 60D9H S# : 602DH

S1# : 60A9H S2¢ : 60B1H SF# : SFFSH SP? : SFEDH
ST# : 603DH SUM# @ 6011H TH(1#) s SFCIH T14(19) : SFBIH
T1¢ 1 60C9H T24 @ 60D1H TNO(1#) 1 SFBYH WP : SFFDH

X0 : 60191 X19 1 6069H X2# 1 6021RH X34 1 6071H
XA} : 6089H XFP 1 6079H XG# 1 6081H 210 : 60SDH

The second report lists any functions which have been dcfined in your
program. The type of the function is listed as well as the memory address
of the function. This will look like the following:

47

MISOSYS BASIC Reference Manual

USER DEFINED FUNCTION LIST page 2.1
! = SINGLE, % - INTEGER, # - DOUBLE, $ = STRING
N$: 5230H

The third report identifies any user-defined commands. It will list the
command name followed by the memory address of the command. If your

program has no user-defined commands, the report will look like the
following:

USER DEFINED COMMAND LIST page 3.1
NO USER DEFINED COMMANDS

If you specify the “-L” switch, then the fourth report will generate a table
of all symbols and labels used in the program being referenced. This will
include all global symbols of SUPPORT/DAT library routines as well.
Thus, the normal mode of REF/CMD is to suppress this report. If you do
request it, it’s listing will be like the following (truncated for brevity):

SYMBOL/LABEL LIST page 4.1
#RALLOC = 65ECH OBBREVEC = 6SEAH R8BRL ~ 658AH
##BUFADR = 65BDH #0C8 - 7DFAH 00CF =~ 87DFH
SRCLRNUM = 6SE4H pecP - 87CDH e8cT - 87CCH
#ECURBUF = 65DER #8DG - 87E1H

#EDIGBUF = 7E06H @8DIGPNT = 7EO02H

S8DPPNT =~ 7RO4H BEDRWRTE - 65DSH

BEDTSINE = 87BSH #8DX2SINE = 87B1H

PEEDIT = 87CSH @0EF - 87E2H RRENDJUMP ~ 6SDBH
CPERL =~ 6SE1H @PERR = 6SE3H RRERRVEC = 65DFH

SYMBOL/LABEL LIST con't page 4.2
ESR34 = 7096R @SR4 =~ 6903H #SR45 = 736FH @SR4SA =~ 7374H
#SR46 = 73DAH @SR4T = 740BH 8SR71 =~ 7467H @SSPSV = €SF1H

@SSRVECTBL = 61278 @SSUB = 76AAH @START = 6SEFH
$STEMPNT - €597H @STRCMP = 6E16H
@STRCMPS = 6E3SH @STRPNT - 6889H @TCHK = 8517H

@TMERR =~ 6467H @TRSTR = 6CA2H @TRSTRL = 6CAAH
CTSTLNE = SAEDH @WRCUR = 60EEH @X2SINE = 8225H @2TOP = 7478H
SLPNT1 = 6F19H SLPNT2 - 6F1BH

48

BASIC Compiler - CED Editor and BC Compiler

The last table generated lists each BASIC source line number followed by
the memory address of the compiled line. This looks like the following
(again abbreviated for brevity):

SOURCE LINE ADDRESS LIST --- page S.1
00100 : S521DH 00110 : S229H 00120 : 5240H 00130 : S524SH
00140 : 527eH 00150 : S2B3H 00160 : S2CEH 00170 : S2D3H
00180 : S302H 00190 1 S338H 00200 : S3I6BH 00210 : S3A2H
00220 : S3ATH 00230 : S3IABH 00240 : S3DFH 00250 : S3IF7H
00260 : S5430H 00270 : S467H 00280 : S49AH 00290 : S4DEH
00300 : SAEEH 00310 : S5S11H 00320 : SS18H 00330 : SSS7H
00340 : 5566H 00350 : 557AH 00360 : SSO9EH 00370 : SSABH

01340 : SEOEBH 01350 : SEB16H 01360 : SE1AH 01370 : SELEH
01380 : SE22H 01390 : SE3SH 01400 : SESCH 01410 : SE64H
01420 : SE68H 01430 : SE70H 01440 : SE74H 01450 : SEAOH
01460 : SER3IH 01470 : SED7H 01480 : SEF1H 01490 : SFO4H
01500 : SF11H 01510 : SF37H 01520 : SF61H 01530 : SF7AH
01540 : SF89H 01550 : SF91H

49

MISOSYS BASIC Reference Manual

Compilation from CED Editor

The easiest way to compile a source program is to use CED to create a
Compiler BASIC program and then type RUN. For a “standard”, plain
vanilla compilation, it’s as easy as an interpretive BASIC RUN, although
much slower.

If you have no test program handy, here’s one to use. Type “S” at DOS
READY. CED will automatically be loaded. Then, using the same
procedure as the interpreter BASIC editor (i.e., typing all lines verbatim),
enter the following (yes, Compiler BASIC supports block graphics on a
Model 4).

10 '

20 ' Draws design on the screen

30 !

40 CLS

50 FOR Y=0 TO 47 STEP 3

60 '

70 ' Plot lines moving in opposite

directions from opposing

80 ' corners

90 PpLOT S,0,0 TO 127,Y:PLOT S,127,47 TO
0,47-Y

100 NEXT

110 AS=WINKEYS:END

Once you've entered this simple program, simply type RUN and wait for
compilation to finish; this should take around a minute and probably less if
you're using hard disks or RAM disks.

If TEMP/BAS already exists, the message “Replacing exisling file” will
appear; otherwise, “Crealing new file” or something similar will be printed.
After your source has been saved to disk (notice that the Compiler BASIC
system is usually disk I/0O bound), BC/CMD will be loaded.

After the initial message has been printed, the sentence “PASS f1” will
appear. Compiler BASIC is a two pass compiler, so this is only the first
run through your source program. Soon the message “Appending supporl
subs” will appear, along with the subroutine currently being linked.

50

BASIC Compiler - CED Editor and BC Compiler

Upon completion of the first pass, “PASS f2” informs you of the start of
the last pass. When this is done, and the support routines have been linked
in from SUPPORT/DAT, you'll see various information detailing the
loading area in memory of the compiled program and the number of bytes
required by each data table (this need not concern you at the moment.) If
all went well, there will be 0 errors, and TEMP/CMD, which holds the
compiled program, will be loaded and executed. After the design has been
created, the “A$=WINKEY$"” instruction waits for a key to place in AS;
press any key to have CED, and your source code, re-loaded for another
round.

Although the programming cycle is somewhat slow, as with almost all
floating point, non-trivial compilers, this procedure is much less taxing
and irritating than the conventional edit, save, run compiler, link,
executed, etc. etc. cycle.

If things didn’t go quite as smoothly as described; that is, if you got some
error messages while compiling the program, check your program. If it
was the one given, make sure you typed it in correctly. The error codes
(summary given elsewhere in this manual) should help you locate the
source of the problem.

If the error was DOS related, an appropriate message will be given,
followed by a detailed DOS error message. The supervisor will
automatically give an error message if a fatal DOS error occurred (e.g.,
missing BC/CMD or SUPPORT/DAT).

Note that, when using an interactive RUN, and barring a fatal disk error
like a missing sector, your current program will be safely in TEMP/BAS
should anything go drastically wrong; which can happen in such instances
as bad Z80 assembly code in your source file, and so on. Simply re-boot,
type “S”, and load in TEMP/BAS using “L:TEMP/BAS”.

Note that due to the external file inclusion facility of “*GET” or
“*INCLUDE”, source files of any length can be compiled, up to free
memory limits in the compiler data tables and loadable machine language
file size. Due to the large amount of space available with CED (around
30K), this is unlikely to be a problem. *GET is usually useful for
including standard library subroutines or user functions/commands.

To re-iterate: If, during an interactive “RUN”, any errors are detected
during compilation, control reverts back to the editor at the end of the first

51

MISOSYS BASIC Reference Manual

pass, with the original source file automatically intact. Otherwise,
TEMP/CMD is loaded and executed. When the program is exited (via
END or STOP or BREAK) control passes back to the editor, with source
text reloaded, unless Z80 code or a compiler bug has caused a serious
problem.

CAUTION

Do not attempt to invoke from DOS Ready, a program compiled
from the supervisor mode. To generate a program which is to be
invoked from DOS Ready, re-compile the source program using
BC/CMD.

Runtime errors

A program will terminate, unless an “ON ERROR GOTO” is active, when
an error condition is detected. If “ON ERROR GOTO” is inactive, then:

RUNTIME ERROR CODE ccc IN SOURCE LINE fxxxxx

will appear (“xxxxx” will be invalid if the source line was unnumbered or
if the line # information was suppressed in the compiled code with the
“NS” directive).

If compilation was invoked from an interactive RUN, control will be
passed back to CED and the source reloaded. If general compilation was
used (described in the following section), control will pass back to DOS
Ready.

A complete list of runtime errors is given later in this manual Note that
certain special DOS error codes, different than standard or unique codes,
will be flagged by being in the range 32-100, with 32 added to the original
code to produce the Compiler BASIC code. The DOS error code must be
between 0 and 68 to avoid confusion with other Compiler BASIC error
codes.

52

BASIC Compiler - CED Editor and BC Compiler

Command-line compiling

The general format of a direct compiler invocation is:

Compiler BASIC
BC filespec,saddr,taddr,-dir-dir,...

filespec Is the source program specification.
The extension defaults to “/BAS”.

saddr Is the specified program origin (start address).
taddr Is the top or highest address to be used

by the compiled program.
-dir Is a compiler directive.

As you can see, a number of variables can be changed in the invocation.
The default loading address for compiled programs is 5200H (DOS
version 5) or 2600H (DOS version 6). You can change this by simply
putting a comuna after the filespec, followed by the desired address (in
hexadecimal format). If it is necessary to limit the top memory location
accessed by the compiled program, this limit can be specified as well (for
example, to limit access in a 32K RAM program, BFFF would be given,
the topmost valid memory location in a machine with 32K of memory).
The default “taddr” used would be that recovered from the system’s
HIGH$ memory pointer at the time the compiled program was invoked.

You can change compilation parameters through a device known as
“directives” - so called because they are directions to the compiler, not
compilable instructions. Directives produce no code per se, although they
may affect the size of the final compiled program. Directives specified in
the_compiler_invocation input are “global” directives, so called because
they affect the entire source program. You can also use directives within
your source program, in which case they’re called “local” directives. Some
directives can be used both globally and locally. The rest are restricted to
either domain. Local directives are explained further on.

As an example, the “NO” global directive inhibits the generation of an
object file, usually to compile a program to check for errors, without over-

53

MISOSYS BASIC Reference Manual

writing an existing object file. In the case of the TEST/BAS program, this
goes as such:

BC TEST/BAS,,,-NO

Note the omission of the loading origin and memory limit variables. They
still retain their default values. However, the commas are necessary to
delimit the sentence. “C TEST/BAS -NO” is invalid, as is “C TEST/BAS,-
NO” and “C TEST/BAS,,-NO”.

Multiple directives are delimited by dashes, as in:
BC TEST/BAS,8000,F000,-WD-WE

In addition to the global compiler directives, which may be used, in most
cases, both globally and locally, there are purely local directives, which
are prefixed by an asterisk (except for Z80-MODE and HIGH-MODE).
This is indicated in the directive list which follows. Note: It is important to
realize that compiler directives are activated as they are encountered in the
input stream in a purely linear manner from left to right; runtime program
logic has no effect on their activation. Directives valid both locally and
globally are prefixed with an “*-”; directives valid only within the
program (locally) are prefixed with only “*”.

Compiler-generated line numbers

The compiler automatically generates line numbers in the executable
program generated by the compiler for any source line which has no
BASIC line number. These numbers start from “1” and are incremented by
“1”. This helps identify which line was suspect during a runtime error trap.
These line numbers are only used for reporting purposes. Runtime error
reporting is not as useful without a reported line number. Your program
cannot reference these “pseudo” line numbers. Nothing prohibits your
program from assigning a BASIC line number the same as these automatic
line numbers; however, for maximum usefulness in error reporting, you
should avoid that practice.

Compiler Directives

BC supports the following compiler directives: GET, INCLUDE, IF-
ENDIF, INJECT, LINK, LIST, NOLIST, NO, NOPRT, NS, NX, PRINT,

54

BASIC Compiler - CED Editor and BC Compiler

PRT, WD, WE, YS, YX, Z80. In the following paragraphs, directives
which are considered global in nature will be denoted with *“(G)”;
directives which are considered local in nature will be denoted with “(L)";
directives which are considered both local and global with *“(B)”; and
directives which are purely local with “(P)”.

Remember, when you use a compiler directive within your source stream,
each must be prefixed with an asterisk and dash (“*-”) except for
PURELY LOCAL directives which are prefixed with an asterisk only.

"GET/"INCLUDE filespec (P)

The two directives “GET”” and “INCLUDE” are equivalent. They are used
to include a sccondary source program file into the input stream. This can
be useful to provide a means of segregating your source program into
“modules” - each module in a separate file. At the conclusion of the
“INCLUDE” file, thc source stream compilation will revert back to
original source program *INCLUDE and *GET compiler directive. Note
that the filespec must include any extension, as required.

IF exp [lines of sourc ENDIF (P

The IF...ENDIF directive pair provides for a conditional compilation. If
the expression, “exp”, evaluates to a non-zero value, then the next lines of
source up to the “ENDIF” are compiled. Otherwise, a zero value of “exp”
results in the compiler ignoring the next lines of source until the “ENDIF”
statement is reached.

The “EQU” operator of “label” also allows you to define values for labels
to be used typically in conditional compilation. For example:

"DOS5" EQU 0:"DOS6" EQU 1
*IF DOS5

PRINT"DOS 5"

*ENDIF

*IF DOS6

PRINT "DOS 6"

*ENDIF

allows selective compilation of source program lines based on the value of
the label tested by the *IF assembler directive.

55

~ MISOSYS BASIC Reference Manual

“INJE n etllower limit(high limit1) (P

This directive is used to insert a machine language load file into the
current compilation machine code output file. If “offset” is given, the file
will be loaded into memory at a new address of “offset+old address”. To
selectively offset program loading - say, to avoid offsetting a load to
addresses in lower RAM - a “lower_limit” can be given (such as 4400H).
Similarly, an “upper_limit” for the offset can be given. Thus, to offset the
loading of TEST/CMD between all addresses in the range 6000H-7000H
by 8000H, use:

*INJECT TEST/CMD(8000H,6000H,7000H)

This instruction would then inject TEST/CMD into the output stream of
the compiled program file. The DOS loader will then load TEST/CMD
into memory along with the compiled program; any parts of TEST/CMD
that would have loaded between 6000-7000 will now load into memory at
E000-F000.

"LINK filespec(module #, module #, ...) (P)

This directive causes the compiler to link a special link-type file into the
current compiled program output. Such a file would be provided and its
use documented by the publisher of Compiler BASIC. The
SUPPORT/DAT library file is an example of such a link file. In addition

to great disk space efficiency, link files are “assembled” much faster than
the original source.

LIST (B)

This directive will list the source program on the video screen during the
second pass, with error messages.

NOLIST ()

This local directive will turn off the source program screen listing until a
subsequent LIST directive is detected.

56

BASIC Compiler - CED Editor and BC Compiler

NOPRT (L)

This directive will turn off the printer listing until a subsequent PRT
directive is detected.

NO (B)

This tells the compiler to refrain from writing the compiled program to a
disk file. You will find it useful to speed up the compilation phase when
you only want to scan for detectable source code program errors.

NS (B)

This directive tells the compiler to inhibit the generation of source line
number information in the compiled program’s object code file. This saves
three bytes per source code line; however, runtime diagnostics will not be
able to then report the line number of a source line which causes a runtime
error. The compiler default is to generate source line number information.

NX (B)

The compiler normally generates code which checks for the BREAK key
and handles TRON at the conclusion of each source program statement. If
you do not desire this BREAK key handling, the NX directive will inhibit
the writing of this code. This will shorten the resulting compiled program
file. Note that the local directive “YX” can resume the generation of this
handling code so that you can restrict certain segments of your program
from having the BREAK handling code.

"PRINT[#n] ["infO" : hrex xR] (P

This directive is used to display a compilation message on the screen or
printed on a printer, depending on the current option switch settings. The
“#n” specifies the pass in which to print (if omitted, the second pass only
is implied). If “#n” is entered as “#0”, then the message will print during
both passes. A “#1” or a “#2” entry indicate that the message will print
only on the first or second pass respectively. Anything in quotes is printed
verbatim. The “[,]” and [;] are print delimiters as in a normal BASIC
PRINT statement. For an entry of “$(chrexp)”, the equivalent ASCII code
is printed. The field denoted as “exp” indicates a print expression.

57

MISOSYS BASIC Reference Manual

PRT (B)

This directive will print the informative and diagnostic messages as well
as the source program to your line printer during the second pass, with
erTor messages.

WD (B)

This directs Compiler BASIC to write the reference data file upon
completion of the compilation phase. The file specification used for the
reference file will be constructed with the filename of the source program
and the file extension of “/DAT”. No drive extension will be appended.
An informative message will be issued advising you of the file’s
generation. This file can be subsequently processed by the REF/CMD
utility to produce a program reference report.

WE (B)

This directive will cause the compiler to wait for you to press a key when
an error has been detected during compilation. This allows you to observe
the error diagnostic message without worrying about it scrolling off of the
video screen. Any keystroke will cause a continuation of the compilation.

YS

This directive informs the compiler to resume the generation of source line
number information (see directive NS).

YX @

This directive resumes the generation of the BREAK and TRON handling
code. See the “NX” directive discussion.

80 (G)
This directive causes the compiler to assume that your source program

contains only Z80 assembly language. The compiler will then inhibit
writing of “‘extraneous” high level support code.

58

BASIC Compiler - CED Editor and BC Compiler

Compilation mode versus Interactive RUN mode

The interactive RUN mode is useful for writing and debugging programs.
The /CMD file produced during this time, TEMP/CMD, is not intended to
be used without the S/CMD supervisor loaded and CED/CMD available on
the disk. It must not be invoked from DOS Ready.

To produce a final, compiled program once development is complete, you
must invoke BC/CMD directly from DOS level. The various optional
parameters or directives available have been described in the last section.
It might be desirable to disable the “debugging friendly” features in the
compiled program (source line number printed on error, BREAK detected,
TRON available) for your final copy; in addition to saving space, this will

make it impossible for someone to decode your program without a lot of
work.

This program will be in the form of a fully independent “/CMD” file,
cxccutable as